The RAMP Architecture & Description Language

Greg Gibeling, Andrew Schultz & Krste Asanovi¢
RAMP Gateware Group, UC Berkeley & MIT CSAIL
{gdgib & alschult}@eecs.berkeley.edu, krste@csail.mit.edu

February 16, 2006

1 Introduction

The RAMP (Research Accelerator for Multiproces-
sors) project is developing infrastructure to sup-
port high-speed emulation of large scale, massively
parallel multiprocessor systems using FPGA plat-
forms. In this paper, we describe the goals and
implementation of the RAMP Design Framework
(RDF). The framgework must support both cycle-
accurate emulation of detailed parameterized ma-
chine models and rapid functional-only emulations.
The framework should also hide changes in the un-
derlying RAMP implementation from the designer
as much as possible, to allow groups with differ-
ent hardware and software configurations to share
designs, reuse components and validate experimen-
tal results. In addition, the framework should not
dictate the implementation language chosen by de-
velopers.

Our approach was to develop a decoupled ma-
chine model and design discipline, together with
an accompanying RAMP Description Language
(RDL) and compiler to automate the difficult task
of providing cycle-accurate emulation of distributed
communicating components.

The RAMP Design Framework is structured
around loosely coupled units, implemented in a
variety of technologies, communicating with la-
tency insensitive protocols over well-defined chan-
nels. This paper documents the specifics of this
framework including the interfaces that connect
units, and the functional semantics of the commu-
nication channels. We cover the RAMP architec-
ture, description language and compiler in detail,
but avoid wherever possible those details which can
and should vary on an implementation basis.

In sectionBlwe describe the interfaces and seman-
tics of the highest abstraction in RAMP, that of the
system being emulated. We proceed, in section [4
to describe the implementation of this high-level
abstraction in very general terms, avoiding plat-
form and language specific constructs where pos-
sible. The remaining section [5| covers the RAMP

description language and the compiler respectively
and are accompanied by a glossary of RAMP terms
found in appendix [A] and the RDL language refer-
ence in appendix

2 RDF Overview

The purpose of the RAMP Design Framework is
to enables high-performace simulation and emula-
tion of large scale, massively parallel systems on a
wide variety of implementation platforms. For the
RAMP project, the designs of interest will typically
be collections of CPUs connected to form cache-
coherent multiprocessors. In RDF the design of
interest, e.g.the one being emulated, is refered to
as the the target whereas the machine performing
the emulation, e.g.a BEE2, is the host.

A RAMP target design is structured as a series
of loosely coupled units which communicate using
latency-insensitive protocols implemented by send-
ing messages over well-defined channels. Figure
gives a simple schematic example of two units com-
municating over a channel. In pactice, a unit will
typically be a relatively large component, consisting
of tens of thousands of gates in a hardware imple-
mentation, e.g.a processor with L1 cache, a DRAM
controller or a network controller. All communica-
tion between units is via messages sent over unidi-
rectional point-to-point inter-unit channels, where
each channel is buffered to allow units to execute
decoupled from each other.

The behavior and abstraction of channels are fun-
damental cross-platform implementation, composi-
tion and debugging of the target system. To these
ends, channels are lossless, strictly typed, point-
to-point, unidirectional and provide ordered mes-
sage delivery; in other words channels have the
same outward semantics as a standard hardware
FIFO. Supporting composition despite unknown
delay, given the above channel semantics requires
that units be latency insensitive by design. This
enables not only compisition of units from idepen-
dant developers, but composition across multiple



Figure 1 Basic RAMP Communication Model
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platforms.

The RAMP architecture is primarily concerned
with defining the interfaces and semantics which
are required of the target system in order to main-
tain the goals of RAMP (see section [3). This in
turn will suggest the constraints on the underlying
host implementation (see section . As the sep-
arate sections in this document would suggest, we
will maintain a very strict separation between the
target and host systems, in order to ensure that
RAMP target designs will be portable across host
implementations.

3 Target Model

This section describes the target level components
of the RAMP architecture and defines their inter-
action. At the target level a RAMP design is com-
posed of units communicating over channels, by
sending messages as shown in figure This sec-
tion expands on the brief description in section
including a discussion of units (section , chan-
nels (section and the details of their interaction

(section [3.4).

3.1 Introduction to Time

RAMP is designed to support a wide range of ac-
curacy with respect to timing, from cycle accurate
simulations to purely functional emulations. Purely
functional emulations of course represent the sim-
ple case, where no measurement of time is required,
and any which exist are incidental. However be-
cause a RAMP simulation may require cycle accu-
rate results, an implementation must maintain a
strict notion of time with respect to the target sys-
tem. Thus we introduce the term target cycle to
describe a unit of time in the target system.

In order to take into account semi-synchronous
systems we have defined a unit as a single clock
domain. This means that the target clock rate of
a unit is the rate at which it runs relative to the
target design. For example, the CPUs will usually
have the highest target clock rate and all the other

units will have some rational divisor of the target
CPU clock rate (e.g., the L2 cache might run at
half the CPU clock rate). This implies that two
units at each end of a channel can have different
target clock rates, further complicating cycle accu-
rate simulation.

Of course units are only synchronized via the
point-to-point channels. The basic principle is that
a unit cannot advance by a target clock cycle until
it has received a target clock cycle’s worth of activ-
ity on each input channel and the output channels
are ready to receive another target cycle’s worth
of activity. This scheme forms a distributed con-
current event simulator, where the buffering in the
channels allows units to run at varying target and
host rates while remaining logically synchronized in
terms of target clock cycles.

The role that target cycles play in synchroniza-
tion of units is described further in section 3.4l As
final note, time in the target system is purely vir-
tual, and thus is not tightly coupled to either real
time or the host system’s notion of time. The pri-
mary goal of the RAMP Design Framework is to
support research through system emulation, not to
build production computing systems. This distinc-
tion is particularly important for hardware (FPGA)
host implementations: the goal is not to build com-
puters from FPGAs.

In a target design which is designed to perform
a cycle accurate hardware simulation, the target
cycle of course will naturally correspond to a clock
cycle in an equivalent non-RAMP implementation,
however, in software time is a much more complex
subject. Having introduced the term target cycle
and, we now defer a more detailed discussion of
time to the following sections, where we will clearly
describe what can and must take place within a
target cycle.

3.2 Unit Interface

Figure [3| shows a schematic of the interfaces a
RAMP unit must support, for an example unit with
two input ports (A & B), and one output port (C).



Figure 2 RAMP Target Model
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Ports comprise the input and output interfaces be-
tween units and each port is connected to another
via a channel. There are two non-obvious points
of interest in this figure. First, in addition to the
ports, there are two connections labeled __Start
and _Done, which are used to trigger the unit to
perform one target cycle worth of action. Second,
the ports are each given a message size, or bitwidth.
In general, RDL supports more complex messages
such as structured messages, or many types of mes-
sages through the use of union messages.

As the figure shows, each port has a FIFO style
interface, which provides a natural match to the
channel semantics as described in detail in section
Input messages are consumed by asserting
the appropriate __Xxx READ when the associated
__Xxx_READY is asserted. Similarly output messages
are produced by asserting __Xxx WRITE, when the
associated __Xxx READY is asserted.

It should be noted that while the above descrip-
tion referred to “signals,” which can be “asserted,”
these constructs can just as easily be represented

in software. In software, __Start and __Done
might be represented by a synchronous function call
(__Start()), which returns when the unit has fin-
ished one target cycle worth of action. The ports
might then be represented in an object oriented
fashion, the same way that a normal FIFO would
be in Java or C++. Note again that we do not sug-
gest any connection between target cycles and any
unit of time in the host implementation, a funda-
mental decoupling which should be clear from the
description of __Start()as a synchronous function
call. For descriptions of both hardware and soft-
ware implementations see section

For reasons that will be made clear in section @
we use the term inside edge to refer to the inter-
face shown in figure [3} the collection of the various
ports and the two control signals. The basic goal
of this interface is to decouple the implementation
of the unit (a complex and time consuming task re-
quiring a researcher to write verilog, java or similar
code) not only from the host, but from the rest of
the target system as much as possible. Currently a
complete decoupling is impossible due to the limi-
taton that the number and types of the ports (see
section [3.3]) must be staticly assigned to each unit
at design time. However it is our hope that more
complete parameterization, polymorphism and op-
tional port connections will, in the future, decrease
this design inflexibility.

Given the above goals and limitations, we de-
scribe here the functional operation of the inside
edge interface: the interface between each unit and
the rest of the RAMP combined target and host
system. This description is written in terms of a
hardware implementation for conciseness and clar-
ity, not because of any fundamental bias in RAMP.
Note also that we use here the term “message”
which will be more formally defined in section [3.3}
In hardware the following interaction will occur be-
tween a unit and an external entity refered to as a

wrapper (see section [4.1f):

1. Before each target cycle the wrapper will
present each port with either zero or one mes-



sages, signalled by asserting or deasserting
__Xxx READY. This is a key point, as it implies
that all messages for a particualar target cycle
are delivered atomically before that cycle can
begin. Furthermore each message is delivered
atomically, never in pieces.

2. The wrapper will signal the unit to start a tar-
get cycle by asserting __Start.

3. The wrapper will wait for the unit to sig-
nal that it has completed the target cycle by
asserting __Done. Note that in software the
start /done signalling may be a synchronous
function call.

4. The wrapper will accept exactly zero or one
messages from each output port for which
the unit asserted __Xxx WRITE at any point
in the target cycle. The wrapper will
only accept messages from ports where the
__Xxx_READYwas asserted during this target cy-
cle. Any attempt to send messages over un-
ready ports will result in the loss of said
mesages. Any message accepted must be deliv-
ered in order, in accordance with the channel
model, as described below. Again, messages
are accepted atomically.

3.3 Channel Model

The key to inter-unit communication, as well as
many of the fundamental goals of the RAMP
project, lies in the channel model. In addition to
the inside edge of the wrapper, the channel model
is the other main piece of the target model.

The channel model can be quickly summarized
as lossless, strictly typed, point-to-point, and uni-
directional with ordered delivery. This should be
intuitively viewed as being similar to a FIFO or cir-
cular queue with a single input and output, which
carries strictly typed messages. In fact, these ex-
ample constructs will often be the building blocks
of channel implementations. From this quick out-
line we now build upon the basic channel model by
describing how they are strictly typed, and their
full behavior as a component of a target system.

Channels are strictly typed with respect to the
messages they can convey. A message in RAMP
is the unit of data which a channel carries between
units, however, this does not in any way restrict the
use or movement of data within a unit. In keeping
with the flexibility goal of RAMP, and to expand
it’s utility as a performance simulation platform, we
also introduce the concept of a message fragment
to describe the unit of data which a channel carries
during one target cycle.

Figure |4]illustrates the difference between a mes-
sage and fragment. The channel (represented as a
concatenation of registers and a FIFO for reasons
which will be clear shortly) carries exactly zero or
one 8bit fragments on each target cycle. The units,
however wish to communicate using 40bit messages.
Therefore the messages must be split into 8bit frag-
ments for transport over the channel at a rate of
one fragment per target cycle. This means that the
sending unit may send at MOST one 40bit message
every five target cycles. To enforce this limit, the
__Xxx_READY signal in the sending unit will only be
asserted one out of five times __Start is asserted,
for a 20% duty cycle.

Of course the inverse example is equally valid: a
message may be smaller than the fragment size of
the channel. In this case a message may be sent
on every target cycle, however bear in mind that
a channel will carry exactly zero or one fragments
per target cycle. This means that the channel may
carry no more than a single message per target cy-
cle.

Thus far we have explained the interaction of
messages, fragments and channels. Now we justify
the use of this rather complex model of communi-
cation.

Fragments provide RAMP with a great deal of
flexibility in the definition and performance charac-
teristics of channels. Fragmentation allows RAMP
to decouple the size of messages, which is a charac-
teristic of a unit port, from the size of data moving
through the channels. This allows channels to be
parametrized with respect to key performance pa-
rameters without sacraficing interoperability. Ad-
ditionally, the concept of fragments is intricately
tied to the notion of target cycles. Just as a target
cycle is the unit of time in RAMP, the fragment is
the unit of data transfered over a channel per target
cycle. Further discussion of the interaction between
time and channels is deferred to section 3.4l

There are three primary variables associated with
every channel: bitwidth, latency and buffering, as
illustrated in figure It should be immediately
clear that the bitwidth of a channel (the number of
bits it can carry per target cycle) is exactly equal
to the size of a fragment. Latency, of course, is the
minimum number of target cycles which a fragment
must take to traverse the channel. However that
the maximum number of cycles a fragment may re-
side in a channel before being accepted by a unit is
not known, and may vary according to the run-time
behavior of the unit. This is the key reason units
must be designed in a latency insensitive manner.

The final primary channel parameter buffering,
is then defined as the number of fragments which
the sender may send before receiving any acknowl-



Figure 4 Message Fragmentation & Target Cycles
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Figure 5 Channel Model with Parameters

32b

32b

32b

d

F—Bitwidth—b‘

47Latency4b{

¢ Buffering

Channel

edgement of reception from the receiver. In gen-
eral a channel which must support maximum band-
width communication will require buf fering >
2 x latency. However, it is easy to imagine a chan-
nel which in fact does not need to be capable of
bandwidth equal to its bitwidth. In this case, the
buffering may actually be less than 0, indicating
that data cannot be buffered within the pipeline
section of channel shown in figure

Of course to be useful a channel must have a
minimum bitwidth of 1. However in order to en-
sure that the RAMP architecture can be feasibly
implemented and maintain a complete decoupling
between units, both the latency and buffering must
be at least 1. The minimum latency of 1 simply
states that the receiving unit cannot receive a mes-
sage in the same cycle that the sender sends it. This
is required in order to ensure that all messages may
be presented to a unit at the begining of a target
cycle, while it may send a message at any point
during the target cycle. The latency requirement
ensures that all data dependencies between units
are separated by at least one target cycle.

The minimum buffering requirement of 1, exists
for a similar reason: without this minimum buffer-
ing two units connected by a channel will have a
control depedency of zero cycles. This is because
the sending unit’s ability to send a message on a
certain cycle will depending directly on whether or
not the receiver receives a messages on that same

cycle.

With these two minimum requirements, a natu-
ral and efficient implementation of the handshak-
ing is a credit based flow control. What’s more
credit based flow control will happily tolerate the
fact that latency must be accounted for both in
the data transfer (fragments moving forward) and
the handshaking (credits moving backward). At
startup, the sending unit would be given a num-
ber of credits equal to the buffering capacity of the
channel, thereby allowing it to send that many frag-
ments prior to the receipt of any additional cred-
its. Of course the receiver should return credits
to the sender, as it consumes fragments, thereby
freeing buffer space. Because it will take latency
cycles for the fragments to reach the receiver and
another latency cycles for the new credits to reach
the sender, the channel will require buf fering >
2 x latency to achieve bandwidth = bitwidth.

An alternative implementation would be a dis-
tributed FIFO where stage would be seperated by
one target cycle of latency, both for data trav-
elling forward and flow control travelling back-
wards. Because both flow control and data are
subject to latency, each stage will require two
fragments worth of buffering, providing for the
same buf fering > 2 x latency required to reach
bandwidth = bitwidth. This introduces the fourth
channel parameter, which will normally be of sec-
ondary interest: the backwards latency of a chan-



nel. Providing a separate control on forwards and
reverse latency greatly increases the utility of the
timing model, and allows RDL to describe a wide
variety of models, including certain asynchronous
circuits.

In general, the benefit of enforcing a stan-
dard channel-based communication strategy be-
tween units is that many features can be provided
automatically. Users can vary the latency, band-
width, and buffering on each channel at configu-
ration time. The RDL compiler also provides the
option to have channels run as fast as the un-
derlying physical hardware will allow to support
fast functional-only emulation. We are also explor-
ing the option of allowing these parameters to be
changed dynamically at target system boot time
to avoid re-running the FPGA tools when varying
parameters for performance studies.

The RDL compiler will build in support to allow
channels to be tapped and controlled to provide
monitoring and debugging facilities. For example,
by controlling the start and done signals, a unit can
be single stepped. Using a separate automatically-
inserted debugging network, invisible to target de-
sign, messages can be inserted and read out from
the channels entering and leaving any unit.

In this section we have described the channel
model and the difference between fragments and
messages. We have also described in detail the pa-
rameters of the channel model, and their interac-
tion with the flow control scheme.

3.4 Unit-Channel Interaction with
Time

Up to this point we have given a broad description
of time, units and channels in a RAMP target sys-
tem. We have even gone so far as to describe, in
terms of a possible hardware implementation, the
semantics of the inside edge. In this section we dis-
cuss the composability of these individual compo-
nents and their system wide interaction, especially
with respect to time.

On each target cycle, the channel will carry ex-
actly zero or one fragments. This restriction is the
key to advancing target cycles in a cycle accurate
RAMP simulation, in a functional emulation this
is of course a moot point. Time, at the unit level,
is advanced upon the reception of a fragment over
each channel, which of course, will make zero or one
messages availible on each input port. In order to
advance time in the absence of a message being sent
over a channel, the channel will in essence carry an
“idle fragment.”

We have very carefully not given first class status

to the concept “idle fragment;” it is not a formal

RAMP term, because there is no actual require-
ment that idle fragments exist. Despite the fact
that idle fragments may or may not exist, they are
a convenient logical construct to explain the mech-
anism whereby target time advances in the absence
of messages. Using this logical abstraction, it is
possible to explain how time advances and is syn-
chronized in a hypothetical RAMP target system.
When the target system is started, each channel
might be filled with a number of idle fragments
equal to it’s latency. Thereafter on each target cy-
cle, the same port mechanism which provides multi-
plexing/marshalling of messages into fragments will
generate either a real message fragment or an idle
fragment if there is space available in the channel.
The primary reason we do not give first class status
to idle tokens is that we can easily imagine situa-
tions in which they are not nessecary, such as when
a channel is directly implemented as registers and
a FIFO, or they would be too expensive to send.

It is important to point out that back-pressure is
an important part of the channel model. Because
units can chose whether or not to consume a mes-
sage on each target cycle, it is possible for a channel
to become full. This becomes important as, on each
subsequent target cycle the sending unit will not
be able to produce a new message. Yet the sending
unit will still be told to advance by a target cycle,
allowing for example a non-blocking router unit.

Also of key important is the fact that units must
not in any way be sensitive to target cycles delays
which are external to their own implementation.
This is a restriction on RAMP designs; the units
must be latency insensitive. The fundamental rea-
son for this requirement is derived from the goal of
RAMP to support cycle accurate performance sim-
ulations without requiring changes to the functional
implementation. The idea here is that a RAMP
system can be configured, by changing the param-
eters of the channels (bitwidth, latency, buffering),
to simulate a wide performance space. In addition
this ensures that any one unit can be replaced with
a functionally identical one, allowing for the pain-
less performance testing of a new architectural com-
ponent or implementation.

This restriction, while key to large scale systems
design, presents a major drawback of the RAMP
Design Framework for certain low level projects,
many of which aim to use RDL as an implemen-
tation, rather than emulation, language. As such
we are working to provide a set of primitives to
describe the existence of cycle and timing depen-
dencies at a very coarse level. In point of fact, if
one designer takes responsibility for creating a col-
lection of latency sensitive units, the target system
will function accurately, however with the disadvan-



tage that this will heavily complicate compatibility
and retard performance research.

3.5 The Target Model

In the above sections we have discussed the com-
plete model of a RAMP design at the target level.
We have discussed units in terms of their interface,
the inside edge, which is composed of a number of
ports and certain emulation support signals. We
have also discussed channels, their properties and
parameters and the difference between messages,
the unit of transfer between units, and fragments,
the unit of transfer over channels. The discussion
concluded with the details of the interactions be-
tween units and channels in terms of the progres-
sion of target level time, measured in target cycles,
and the latency insensitive design requirement.

This section is deliberately abstract, with the ex-
plicit intent of being vague about implementation
details. This is done to ensure that RAMP has no
platform or language bias, and can in fact manage
emulations or tests including several platforms con-
nected together. The next section will discuss the
details of implementation, including the require-
ments RAMP makes of an prospective implemen-
tation platform, and the interactions between im-
plementation and abstraction.

4 Host Model

In comparison to the crisp, rich target model in sec-
tion [3] the host model if RAMP is far more sparse,
with a much smaller glossary. Of course this is one
of the goals of RAMP: to avoid overspecifying im-
plementation.

We will also define most of the concepts at the
host level in terms of the target level concepts which
motivate their existence and parameters. This is
done because most host level concepts exist solely
to define those requirements imposed on a RAMP
implementation by the target model. Time at the
host level is measured in host cycles, units are en-
capsulated in wrappers (section , and channels
are implemented over links (section . The final
construct, which has no analog in the target system
is that of the engine (section which drives the
emulation.

Figure [f] shows the eventual implementation goal
of RAMP. In this section we will define and clarify
the constructs needed to realize this lofty goal while
supporting the target model.

Figure 6 RAMP Host Model

Host a (Hardware/FPGA)

' Library !
| !
i (Output) :
1 j
P Outside Edge. _ P Outside Edge. _ R ’
i/ Link A 1§ Link B
! (Channel A)’ 14 (Channel B)
| Wrapper 1  Wrapper 2
{ (Unit1) L (Unit2) |
i 4 Link C
! A | ‘E‘(cnanne\ cy
\ \/—1 Lmlk F | \_T‘ 7
Rt B I S - (Channel F) Rt B I S -- -
Link G Link E
(Channel E) i
(Channel G) . | .
(ChannelOf | Library

i\ (Input)

Link H Link | | -

(Channels (Channels
Host y (Workstation)

D&G) 7 E&R)

RS232 TCP/IP

A kK

i Host B 1 (Channel E L \\ T . i
' (Misc. Platform) | b o y
1 . T Wrapper 3 EM ibrary ||

,/”1 (Channel F) | (Unit 3) :Channe\ HY (Debug) | §

/

4.1 Wrappers

Figure [7] is the direct expansion of figure [3 to in-
clude the wrapper, links and control mechanisms
required to implement the pure target model of sec-
tion [3] The key point of interest in figure [7] is the
wrapper around the unit, which was briefly men-
tioned in section (3.2l The wrapper is the container
for all of the implementation details required to im-
plement the inside edge interface.

We can now also introduce the term outside edge
to describe the interface between the wrapper and
the links, as well as the rest of the host implemen-
tation. The fundamental job of the wrapper is to
construct and support the insidge edge interface
and translate it to the outside edge interface. This
includes the following functionality:

1. Multiplexing/marshalling of messages down to
fragments. In fact the wrapper is also respon-
sible for converting from whatever data rep-
resentation is supported by the target level, to
whatever representation is required to actually
transport data over links.

2. Demultiplexing/demarshalling of fragments to
messages. This is the inverse of above.

3. Target cycle firing. This includes the logic de-
scribed in section [3.2] and [3.4] for determining
when a target cycle may begin based on incom-
ing fragments (including idles) and generating
whatever implementation of “idle fragments”
is appropriate.



Figure 7 Wrapper around a Unit
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4. Enforcement of channel semantics, including
ensuring that no more than one message is read
or written through each port on a given target
cycle. Also ensuring that message transmission
and reception is atomic, despite the fact that
message delivery, because of fragmentation, is
not.

To this end, the wrapper will need to contain a
significant amount of functionality. In addition to
the link interfacing logic, which is described below,
the wrapper must include state and control logic
required to manage target cycle firing in the face
of input links which may be temporarily empty or
output links which may be full. Of course, the fir-
ing conditions will also depend on the automatic
debugging functionality, which in many cases will
include the ability to pause or single step a unit.
The main rules for firing have been outlined in sec-
tion

In general because wrappers are conceptually
simple, but may involve strange parameter vari-
ations, they will be automatically generated by
the RDL compiler as described in section This
is possible because wrappers are implementation
lanaguage dependant, but require no design infor-
mation beyond basic link parameters, and what
would be part of the target model.

4.2 Links

Links are the host level analog of channels. Un-
like channels though, RAMP imposes almost no re-
strictions on links, other than their ability to sup-
port the channel model described in section 3.3
thus links can be implemented over nearly any
data transport technology. Examples include direct
hardware implementation of registers and FIFOs,
software circular buffers, high speed serial links,
busses, or even UDP/IP packets. Of course not all

of these implementations lend themselves to direct
channel implementation, for example networks such
as Link I in figure [ are often lossy, and unordered.
Thankfully protocols such as TCP can provide the
guarentees required.

Unlike wrappers which can be generated au-
tomatically, links will often include functionality
which is highly implementation platform as well
as language dependant. Thus while some links
(such as circular buffers in software and FIFOs in
hardware) will be automatically generated, others
like TCP/IP connections will require pre-written
library components to provide their functionality.
The RDL compiler includes a number of ways to
easily create and extend these libraries.

Because of the relative lack of restrictions on
links, there is suprisingly little about them which
must be defined. For details about the implementa-
tion and composability of links we refer the reader
to section [5| wherein we discuss example implemen-
tations.

4.3 Engine

In addition to units and links, most implementa-
tions of a RAMP design will require some way to
drive them, e.g.a clock in hardware or a scheduler
in software. The exact job of an engine is to decide
when and which wrappers are allowed to run, often
in conjunction with the wrappers themselves.

In hardware, this task often reduces to providing
the reset and clock signals required for a simple
synchronous design, thus keeping the engine simple.
In a hardware simulation of course the engine might
use behavioral constructs to generate a clock signal
out of thin air, as it were.

In software the engine is effectively a user level
thread scheduling package, where each wrapper
(unit) represents a single thread, and the engine
must decide which ones to run. RDL and the com-



piler both admit the possibility of a wire variety of
schedulers each with different policies. This has led
to a recent interest in supporting efficient software
emulations of such projects as Click[] and P2[].

5 Implementation

In the previous sections, [3] and [] we described in
detail the conceptual models associated with both
the target and host RAMP systems. However,
aside from providing examples where nessecary us-
ing hardware terminology, we have avoided imple-
mentation details as much as possible. The primary
reason for this is to clearly separate the theoretical
basis of RAMP from the practical implementation.

This section describes in more detail our first cut
at implementing not a specific RAMP design, but
the tools required for constructing RAMP designs.
We discuss a new language tailored to RAMP,
called RDL, it’s conversion to Verilog, Java and C
and the structure of the compiler.

5.1 RDL

In order to provide a high level description of the
various target systems and units that RAMP will
be called upon to work with, we have developed the
RAMP Description Language or RDL (pronounced
“riddle”). First and foremost, RAMP is clearly tar-
getted at large systems where components are cre-
ated and implemented separately. As such, a large
part of the features in RDL were motivated by the
need to tie disparate designs together, in a sim-
ple, controllable fashion. RDL therefore is best de-
scribed as a hierarchical declarating programming
language, and a possible subset of a future lan-
guages.

RDL is a combination of a structural modelling
language (similar to the Liberty[] language devel-
oped at Princeton) and a simple netlisting lan-
guage, such as a subset of Verilog or VHDL might
provide. At the current time RDL includes sup-
port for hierarchical namespaces, messages (both
simple, structured and union) and units (both leaf
and hierarchical). RDL does not, and will never,
provide for the specification of leaf unit behavior,
as the RAMP project is aimed to tie together ex-
isting designs.

Unit designers must produce the RTL code of
each unit in their chosen hardware design lan-
guage or RTL generation framework, and specify
the range of message sizes that each input or out-
put channel can carry in RDL. For each supported
hardware design language, the RDL compiler auto-
matically generates a unit wrapper that interfaces

Program 1 Example RDL showing late binding

namespace Base

{ message bit[0x20] DWORD;
r};;mespace Extend

{ message bit[1] :: Base :: BIT;
i;mespace UseRename

{
}s

message ::Base::BIT LOCALBIT;

to the channels and provides target cycle synchro-
nization. In addition the RTL code for the channels
is generated automatically by the RDL compiler,
from the connections and hierarchy specified in the
RDL source.

5.1.1 Keywords, Numbers and Identifiers

Program [1]is a very simple fragment of RDL which
shows the basic structure of an RDL file. This RDL
file consists of three namespace inside of the base
design namespace, called “Base,” “Extend,” and
“UseRename.” In each namespace there appears
a single message declaration, “DWORD,” “BIT,”
and “LOCALBIT.” Aside from the basic features
of RDL (namely that it is a structural modelling
language or a hierarchical netlisting language) pro-
gram (1| hints at several notable language features
which merit discussion.

First and simplest, any and all numbers in RDL
may be in base 2, 8, 10 or 16. A number which
starts with a digit 1 through 9, is assumed to be
in decimal. A number which starts with a 0, must
contain a base indicator (b for binary, ¢ for octal,
d for decimal or h for hexadecimal) followed by a
number in that base. Thus the number ten could
be written in a myriad of ways: 10, 0b1010, 0c12,
0d10 or OxA.

Slightly more complicated than numbers are var-
ious identifiers in RDL. Identifiers, as in C, must
start with an underscore or a letter, and may con-
tain underscores, letters and numbers and are case
sensitive.

In RDL there are two kinds of identifiers: static
and dynamic. Static identifiers are so called be-
cause they name objects in the static RDL names-
pace hierarchy, that is objects which appear in RDL
source text such as units or platforms. Dynamic
identifiers on the other hand name objects in the
system described by the RDL text, that is objects



in the unit or platform instance hierarchy. Pro-
gram |1 only contains static identifiers, since there
are no actual unit declarations and thus no inputs,
outputs or instances. The difference between static
and dynamic identifiers will become clear by way of
examples in the following sections, for now all that
is important is that static identifiers are qualified
with “:” and dynamic identifiers with “.”.

This simple example also serves to introduce
two of the most powerful features of RDL. First,
the ability to create namespaces significantly in-
creases the modularity of the language, allowing
researchers in one group to create their design in-
dependently of another group. Second, RDL al-
lows all constructs, in this example messages, to
be named which allows independently created de-
signs to be easliy merged into a single target sys-
tem. RDL goes so far as to allow complete late and
non-local binding of static identifiers. Late binding
allows declarations to appear in any order with-
out regard to their use, however non-local binding
deserves further explanation. For example, in pro-
gram [I] the coder has created the namespace Base
and used a declaration in the namespace Extend
to extend Base, a perfect example of a non-local
binding.

At first this seems a useless feature, why couldn’t
the coder simply have included BIT in Base
to start with? However with the addition of
the include “‘Filename.RDL” as NewNamespace
statement, the ability to late bind names, such as
BIT in this example, becomes a powerful mecha-
nism for independant RDL developement. In addi-
tion, late binding of declarations allows for algorith-
mic parameterization, whereby a hierarchicaly de-
fined unit can make use of a component unit which
is not declared until later, by another researcher in
another file.

The last feature of interest in this sample is the
use of qualified identifiers, whereby the coder has
used a declaration in namespace UseRename to
give ::Base::BIT a local name. The details of this
statement deserve a minor explanation: a qual-
fied static identifier is very similar to a file path,
navigating through namespaces rather than fold-
ers. The “::” qualified in static identifiers is exactly
like the “/” qualifier in UNIX path names, both for
specifying the root, and relative path segments.

5.1.2 A Simple RDL Example

Shown in program [2]is an example RDL fragment,
which we will use to illustrate the basic features of
RDL and the compiler. This is a simple RDL de-
scription of a 32bit Up/Down counter which will
count up by one each time it receives an input mes-

Program 2 A 32bit Up/Down Counter in RDL

unit {
input bit[1] UpDown;
output bit [32] Count;
} Counter;
unit {
instance I0::Swln Userln
(Value (InChannel ) );
instance Counter Counter
(UpDown(InChannel) ,
Count (OutChannel ) );
instance I0::LEDOut UserOut
(Value (OutChannel ) );

channel fifopipe<l, 1, 1>
InChannel;

channel fifopipe <32, 1, 1>
OutChannel;

} CounterExample;

sage that is an 1 and down by one each time it
receives a 0. This counter will produce an output
message consisting of it’s count value AFTER the
appropriate action is taken upon receipt of each in-
put message. Of course if it receives no input, it
will produce no output. This can be summed up in
a simple state transition diagram such as in figure
B

While this is an extremely simplistic example,
and much smaller than a typical unit, it illus-
trates the basics of RDL. The :: Counter is de-
clared to accept unstructured 1-bit messages at
its port “UpDown” (:: Counter.UpDown) and pro-
duce 32-bit messages at its output port “Count”
(:: Counter.Count). Of course this is a leaf unit,
which will be implemented directly in the host lan-
guage (Verilog, Java for example).

RDL and the compiler also support hierarchically
defined units like “CounterExample” in this code
fragment. Inside this unit, there are two channels,
shown with detailed timing models, which are used
to connect the three unit instances. Note the use
of named port connections similar to Verilog. Posi-
tional and explicit port specification is allowed, in-
cluding the ability to specify connection of a local
channel to a port significantly lower in the hierar-
chy, without explicit pass-through connections at
each level.

RDL also supports declarations for host plat-
forms (eg. an FPGA board or computer with spe-
cific I/Os) and mappings of a top-level unit onto
a platform. Platform declarations include the lan-
guage (e.g., Verilog or Java) to generate and the
specific facilities available for implementing chan-
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Figure 8 Counter State Transition Diagram
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nels on the host. The back end of the compiler
is easily extensible to support new languages, and
new host implementations.

A mapping from a unit to a platform may also
include more detailed mappings to specify the ex-
act implemention of each channel. The compiler
can take just such a mapping and produce all of
the necessary output to instantiate and connect the
various leaf units, which have been implemented in
the host language.

A full reference for the RAMP description lan-
guage can be found in appendix A more com-
plete example is given in the next section, but we
will refer back to this example later, as it is simple
enough to be easily understood. In addition the
complete source code, and instructions for compil-
ing and mapping to a Xilinx FPGA or a Java host
are provided at http://ramp.eecs.berkeley.edu.

5.1.3 Another RDL Example

The counter example in the previous section is
clearly overly simple for a RAMP unit. Because
RAMP units must be latency insensitive, in gen-
eral they will be relatively large components of a
design, to use the examples from section [2] a pro-
cessor with L1 cache, a DRAM controller or a net-
work controller. In this section we present yet an-
other RDL example, program [3| which illustrates
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the declaration of three components: a processor,
a cache (presumably L2 or lower) and a memory
controller of some kind.

The memory system is declared to deal in bursts
of 256 bits or 32 bytes, and is byte addressable with
a 32 bit address. As such a burst of data is 256 bits,
and the corresponding address is 32—l0g2(256/8) =
27 bits. A Store then is a structured message con-
taining a BurstData and the BurstAddress at which
to write it back. Loads are split-phase in this ex-
ample with two separate messages: a LoadRequest
and a LoadReply which are clearly nothing more
than new names for BurstAddress and BurstData
respectively.

After all of the relevant structuree messages are
declared, there are declarations for the two union
messages required for this example. The two union
types are called MemoryIn and MemoryOut, where
MemoryOut is a simple message which can only
carry LoadReply messages. The Memoryln port
declaration is only marginally more complicated as
it is a union capable of carrying both Load and
Store messages, along with a tag indicating which
the current message is. Tags in RDL are auto-
matically assigned in a deterministic and repeat-
able manner, ensuring that they will not change
so long as the union message declaration remains
unchanged. Tags can also be explicity specified.

Program {4 completes this example by declaring a
top level unit System which instantiates the other
three units and connects them as shown in figure[9}
The program contains three instance declarations,
all of which use fully qualified static identifiers
for the units which are being instantiated. This
was done in order to ensure that they have been
correctly named despite the fact that we have no
shown the placement of the declaration for System
in the namespace hierarchy.

System also contains four channels, connecting
the appropriate ports of the instances. The chan-
nel declarations inside of System start with the
channel keyword, followed by a channel model, in
this case FIFO1x16, followed by the name of the
channel and a pair of dynamic identifiers for the
ports it connects. Note that channel names are
also dynamic identifiers, but they cannot be quali-
fied. The port names however can be qualified dy-
naminc identifiers, which may in fact refer to ports
on subinstances, allowing easy hierarchical compo-
sition without having to pass information through
a port at every level of the instance hierarchy.

The last feature of note in this program fragment
is the channel model declaration at the top. This
declares a channel model named FIFO1x16, which
we reference four times inside the System unit dec-
laration. The model is of a 16 deep, 1 bit wide



Figure 9 A Simple Computer System
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FIFO, with a 1 cycle latency, as outlined in section

B3

5.2 RDL Compiler & Toolflow

In the previous section we gave a number of ex-
amples of RDL, and it’s many features. The key
to translating RDL into a working RAMP design
is of course the RDL compiler. However because
the RAMP architecture is complicated and cross-
implementation with allowances for independant
developement of various units, figure deserves
brief mention before we delve into the details of the
compiler.

Shown in figure [I0]is a simple illustration of the
RAMP toolflow. Shown at the top are the steps to
create a target system in a specific implementation
language (Verilog or Java for example). The box
in the middle represents a complete RAMP design
including all of the information nessecary to gen-
erate a complete runnable simulation. The bottom
box then represents the steps required to actually
produce a runnable simulation, including rerunning
the RDL compiler to produce the wrapper and link
code, followed by the native host toolflow, be it a
JVM for an FPGA system such as BEE2.

5.3 Shell Verilog

In this section we give an example of the inside
edge shell Verilog generated by the RDL com-
piler from program The Counter.RDL file
described in section would be run through
the RDL compiler (rdlc) with the command:java
-jar rdlc.jar -shell:‘‘Counter Verilog’’
CounterExample.RDL resulting in the verilog
shown in program

Included in this module is a port declaration for
each RAMP port, and a number of control sig-
nals, as hinted by figures 2] and [7]] Notice that
in addition to the __Startand __Donesignals men-
tioned above, a __Clockand __Resetare included to
support system-wide reset of the the RAMP sim-
ulation. The final two declarations are for local
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parameters (in Verilog these are constants which
cannot be overridden at instantiation time) for the
bitwidths of the various ports. In a unit with union
ports, there would also be local parameters giving
names to all the tag values used on the union port.
With this Verilog shell of the inside edge interface
in hand a researcher could fill in the functionality
required. Later on, an RDL design incorporating
this unit would result in the generation of the wrap-
per, which is responsible for instantiating this unit.
By adding the above file, with appropriate function-
ality, into the synthesis project, a complete RAMP
simulation design can easily be produced.

5.4 Shell Java

In this section we will cover the basics of working
with a RAMP simulation generated in Java. Java
was chosen as the primary software output language
of RDLC not because it is well suited to simula-
tions, but because it is easy to read, easy to im-
plement and has a superset of the features of most
other software languages. Thus we believe it is an
easy matter to write the output code for other soft-
ware languages by copying and modifying the Java
output code.

Shown in program [0 is the java inside edge
shell generated from program In addition to
this one file, the command java -jar rdlc.jar
-shell: ¢ ‘Counter Java’’ CounterExample.RDL
, will generate a series of support files, for all of
the classes and interfaces mentioned in this file.

What follows is a list of the relevant statements
in the java shell.

Package: There is a package declaration placing
this in the root package (JavaShell) of the de-
sign. In a larger design, the package hierarchy
will exactly mirror the RDL namespace hier-
archy.

Class Declaration: We are declaring a class
named Counter, which implements the stan-
dard RAMP unit interface. = Notice that

the RAMP wunit interface is named as



Figure 10 RAMP Toolflow
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Program 6 Java Shell for Counter.RDL

package JavaShell;

/o

x Class: Counter
x Desc: TODO
x @author gdgib

*/

class Counter implements ramp.library.__Unit {
protected ramp.library.__Input<ramp.messages.Message_1> UpDown;
protected ramp.library.__Output<ramp.messages.Message_32> Count;

Vit

*x @see ramp.library.__Unit#Reset ()

*/
public void Reset() {

}
Vit

x @see ramp.library.__Unit#Start ()

*/

public boolean Start () {

}

JavaShell.ramp.Unit indicating is is the inter-
face Unit in the ramp package, which will con-
tain a number of other support classes and in-

terfaces.
Ports: There are declarations for an in-
put and an output port, as repre-

sented by the JavaShell.ramp.Input and
JavaShell.ramp.Output interfaces. These
interfaces take advantage of the class spe-
cialization availible in Java 1.5, to use the
Java typechecker to ensure that only the
appropriate message types can be sent or
received on these ports.

Methods: There are empty method implemen-
tations for the two methods inherited from
the JavaShell.ramp.Unit interface, along with
JavaDoc references to the original two meth-
ods.

In this section we have summarized the basic fea-
tures of the Java inside edge shells, as generated by
the RDL compiler.

5.5 Mapping to Platforms

In order to support designs which can or should
span multiple platforms, RDL includes cosntructs
to describe both host platforms and the mapping
from a hierarchical target design to these platforms.

First off, RDL acknowledges that most host sys-
tems will be comprised of multiple platforms. This
is manifest in the hierarchical construction of plat-
forms, as shown in figure where a workstation
platform is composed of a BEE2 and a desktop
computer connected by Ethernet.

In addition to the requirements imposed by real
platforms (e.g.that links may not be point to point
like channels) platform specification is complicated
by the desire to reduce compilation cycles on very
large systems. For example a large design filling
a Xilinx V2Pro 70 FPGA on the BEE2 may take
many hours to place and route, forcing the RDL
compiler to support some form of compile-once,
run-many to reduce overall target implementation
costs.

In order to cope with these requirements RDL
provides for creating a hierarchy of units, a hierar-
chy of platforms and a hierarchy of mappings which
group one or more units onto a specific platform.
While on the surface a map groups units onto a
platform, it must also provide for specifying which
unit subinstances are handled by it’s map subin-
stances, and which channels are carried by which
links.

While this requires a good deal of specification on
the part of the RDL writer, schemes which place a
higher burden on the RDL compiler are infeasible in
the short term. As it is, the compiler cannot auto-



Figure 11 Mapping to Platforms
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matically partition a design, or cope with multi-hop
channels to link mappings. Even without these fea-
tures, RDL provides an excellent framework for re-
search in these areas by providing a common specifi-
cation language, allowing a partitioning or network
embedding tool to handle the complex algorithms,
and leave the implementation to RDLC. We expect
this to be an active area of future research and hope
to provide a solution in the future, but for now a
working RDL compiler is more valuable.

5.6 RDL Compiler Structure

This section describes in some detail the internal
structure of the RDL compiler. Because the RAMP
architecture is designed to be cross-platform, we
have found the structure of the compiler and tools
to be vitally important when porting RAMP to a
new host implementation. For this reason the com-
piler is highly modular, with very full abstractions
and generalizations wherever possible.

Also, to ease the porting process, and to speed
initial developement, the RDL compiler is currently
written in Java, as java has a higher functionality-
per-line density than many languages and can run
on many platforms. We envision a future rewrite
of the compiler in C, C++ or a similarly low level
language for performance reasons, as java can be
slow. However, we believe this will not be nessecary
or useful for some time, as ease of modification will
be significantly more important during the early
stages of the RAMP project.

5.6.1 Back End

Figure[12] gives a high level view of the structure of
the RDL compiler, with respect to the java pack-
ages of which it is composed and the functionality
they contain. In our attempts to make RAMP en-
tirely platform agnostic, the RDL read-in and host
language generation have been completely sepa-
rated, and encapsulated as much as possible. Since
this is still fundamentally a compiler for the RAMP
description language, each output generation pack-
age (Verilog, Java and C in figure is expected
to take an abstract set of in memory RDL objects
and construct the appropriate output.

In order to simplify each output package in light
of the fact that most of them really differ only
in the text of the generated output, we have cre-
ated object-oriented software and hardware pack-
ages (rdl.output.oosw and rdl.output.hw respec-
tively). These packages take care of transforming
the in memory RDL objects into the appropriate
structure. From the object-oriented software repre-
sentation to both Java and C is trivial, as is generat-
ing Verilog from the hardware representation. With
these intermediate representations adding for ex-
ample C++ and VHDL as output languages should
be trivial.

There might also be situations where there are
two output packages that generate the same lan-
guage, but for different simulation platforms. For
example: RDLC will often be used to generate sim-
ulations which must be plugged into existing frame-
works with their own different standards for com-
munication, naming, typing and timing, but which
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Figure 12 RDL Compiler Structure
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which generate textually different code to make it | Map
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For more information about the structure of the Channel
compiler, please see the RDLC javadocs. = FIFO
| FIFOPipe
5.6.2 Front End
Message ::=

In the same vein as the output packages, the input
package in the RDL compiler is written as a series of
java classes, one representing each RDL construct.
For example there are classes for units, channels,
messages and ports. The RDLC front end as shown
in figure [12] consists of all of the code required to
instantiate and connect all of these classes to create
a composite in-memory data structure representing
the RDL design.

In the remainder of this section we give a loose
BNF model of this memory structure. Because this
memory structure exactly mirrors the RAMP de-
scription language, this may also be taken to be a
loose BNF model of the constructs in RDL. How-
ever it is NOT a BNF grammar of RDL itself, that
is presented in appendix

Design ::= Namespace
Namespace ::= Elementx
Element

= Namespace

| Channel

| Message

== Simple Message
|Structured Message
|Union Message

Unit ::= UnitInstance
Unitinstance ::= UnitField*

UnitField
= input Port
| output Port
|UnitInstance( Channelx )
|Channel Source Destination

Plat form ::= Plat formInstance
Plat formInstance ::= Plat formFieldx

Plat formField
::= Plat formInstance
|Engine
| Language
|De fault LinkType
|Port LinkType
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Program 3 A CPU and Memory Model in RDL

namespace Memory

{

b

message bit[256] BurstData;
message bit[27] BurstAddress;
message struct
{
BurstAddress Address;
BurstData Data;
} Store ;
message BurstAddress LoadRequest;
message BurstData LoadReply;

message union

{
LoadRequest Load;
Store Store;

} MemorylIn ;

message LoadReply MemoryOut;

unit
{
input Memoryln CPU2Memory;
output MemoryOut Memory2CPU;
} Memory ;

namespace CPU

{

unit

{

output ::Memory:: Memoryln

CPU2Memory ;
input ::Memory :: MemoryOut
Memory2CPU ;
} CPU;
unit
{
output ::Memory:: Memoryln
Cache2Memory ;
input ::Memory :: MemoryOut
Memory2Cache;
input ::Memory:: Memoryln
CPU2Cache;
output ::Memory :: MemoryOut
Cache2CPU ;

} Cache;

Program 4 A Simple Computer System

channel fifopipe<1,1,15> FIFO1x16;

unit

{
instance ::CPU::CPU CPU;
instance ::CPU::Cache Cache;
instance ::Memory:: Memory Memory;

channel FIFO1x16 Chanl
{ CPU.CPU2Memory —>
Cache.CPU2Cache };
channel FIFO1x16 Chan2
{ Cache.Cache2CPU —>
CPU. Memory2CPU };
channel FIFO1x16 Chan3
{ Cache.Cache2Memory —>
Memory . CPU2Memory };
channel FIFO1x16 Chan4
{ Memory . Memory2CPU —>
Cache . Memory2Cache };
} System;

Program 5 Verilog Shell for Counter.RDL

module Counter (-_Clock ,
__Reset ,
__Start
__Done,
__UpDown_ READY,
__UpDown_READ,
UpDown,
__Count_READY ,
__Count_WRITE,

Count );
input __Clock, __Reset;
input __Start;
output __Done;
input __UpDown_ READY ;
output __UpDown_READ;
input UpDown ;
input __Count_READY ;
output __Count_WRITE;

output [31:0] Count;

localparam _WIDTH UPDOWN = 1;
localparam _WIDTH COUNT = 32;
endmodule
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Map ::= MaplInstance
MaplInstance ::= MapFieldx

MapField
= MapInstance
|UnitInstance
| Plat formInstance
|Map Unit Map
|Map Platform Map
|Map Channel Link

For more information about the structure and
possible ways to extend the RDL compiler, we refer
the interested reader to the javadocs, availible from
the RAMP website.

6 Project Status

The RDL compiler has been completed and is
fully documented with javadocs. The RAMP de-
scription language and the RDL compiler are sta-
ble, with working examples, and are ready for
research use. Timing-accurate simulations have
been mostly implemented, but remain untested.
The compiler, the counter example, counter ex-
ample lab and the javadocs are all availible from
http://ramp.eecs.berkeley.edu.

7 Future Work

Finishing this document will be a subject of ongoing
work, since RDL and RDLC are in active use and
still partially under developement, we do not expect
this to be a discrete goal. Appendix [B] needs to be
updated for platforms and maps, as do the sections
about the RDL compiler above.

Polymorphism, complete integer parameters and
generator language constructs are all useful, possi-
ble vital extensions to RDL which have not been
implemented.
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A Glossary

Simulation: We use the work simulation to refer
to a timing accurate simulation of a target de-
sign. This is in contrast to the term emulation,
which implies timing inaccuracy.

Emulation: An emulation in RDF implies a tim-
ing inaccurate emulation of a target design.
Emulation will provide much higher emulator
performance, as it removes the overhead of de-
tailed simulation timekeeping.

Host: Host refers to the hardware or software de-
signed or supported by the RAMP project
for emulating or simulating a “target” design.
This is the actual implemented design. The
host model includes the concepts of wrappers,
links and the outside edge interface.

Link: A link is a the actual communication facility
present in the host system, on top of which a
channel is built. Links may be lossy, dynam-
ically routed, have extreme latencies and may
not be point-to-point. It is the job of the wrap-
per in conjunction with the link management
code to ultimately handle the complexities of
the link and present the unit with an idealized
channel through the inside edge.

Wrapper: This is the Verilog, Java, C or simi-
lar implementation code which forms an inter-
face between a unit, and the exact host sys-
tem in any given simulation. Wrappers will be
dynamically generated by the RDL compiler,
though so called ”inside edge shells” contain-
ing no functionality may be generated to as-
sist in unit development. The wrapper is ul-
timately responsible for providing a clean set
of ports to the unit and hiding from it the de-
tails of the host system. As such the wrapper
also provides the following control signals (in
a hardware host implementation):

__Clock: This is the host system clock.
_-Reset: This is the host system reset signal.

__Start: Is a single cycle pulse, driven by the
wrapper to tell the unit that it must begin
simulating a single target cycle.

__Done: Is a single cycle pulse, drive by
the unit to tell the wrapper that it has
completed the current target cycle. A
unit which can process a target cycle in
one host cycle may wire this directly to
__Start.

19

Outside Edge: This describes the interface be-
tween the wrapper and links as implemented
in the host system. The exact details of this
interface will likely vary widely with the links
the wrapper must connect to.

Engine: The engine is the hardware module or
software object responsible for driving the em-
ulation. In hardware, this translates to gen-
erating clock and reset signals. In software
an engine is tantamount to a user level thread
scheduler.

Target: The target is the system which the host is
currently simulating. This is the idealized de-
sign, in which a RAMP user is interested. The
target model includes the concepts of units,
channels, messages, fragments and the inside
edge.

Unit: A unit is an indivisible encapsulation of
functionality in RAMP which simulates some
piece of the target system, in a RAMP com-
patible fashion (I.e.with support for channels,
etc). Units should be specialized implemen-
tations of target functionality, and should be
entirely general from the point of view of the
host system, thereby enhacing the composabil-
ity of the system. Note that a unit will need
to be aware of the host semantics of RAMP as
described in section [3.41

Channel: Channels are the abstraction of inter-
unit communication in RAMP. Each channel
will connect exactly two units, and provide in-
order, lossless message transport at the rate of
zero or one fragments per cycle. Channels have
a number of characteristics:

Type: This includes the widths and types
of messages that the channel may carry.
This information must match the de-
clared message types the sender and re-
ceiver unit are capable of generating and
consuming respectively. In RDL this
information is automatically generated
based on the ports to which the channel
connects.

Bitwidth: The width of the channel will be
specified in bits. This is the width of the
fragments this channel carries, at a rate
of zero or one fragments per target cycle.
Minimum bitwidth is 1.

Latency: Is measured in target cycles as
the minimum transit time of any frag-
ment from the sending to receiving unit.
Note that max(messagesize)/bitwidth



provides a lower bound on the latency of
the channel in any actual implementation.
Minimum latency is 1 to ensure that there
are no combinational loops.

Buffering: Indicates the number of fragments
that the channel can buffer. Min-
imum buffering is 1 to ensure there
are no zero cycle control dependen-
cies.  Bandwidth = bitwidth when
buf fering > 2 * latency.

Reverse Latency: Is measured in target cy-
cles as the minimum time from a message
or fragment being consumed by the re-
ceiving unit to the time the sending unit
realizes this fact. Minimum latency is 1
to ensure that there are no combinational
loops, and by default this will be the same
as the latency.

Examples: Expressing the above metrics is
tuples (bitwidth, latency, buf fering) we
can say a 32bit 256 line cut-through FIFO
would be (32,1, 256).

Message: Messages are the basic unit of com-
munication between units. Messages may be
structured (composed of smaller messages) or
tagged unions of different sub-message types.
Messages are the target level unit of flow con-
trol.

Fragment: Fragments are the basic unit of data
transport over channels. Notice that while
channels may carry large messages, they must
be broken into smaller fragments at the send
and reassembled. See section [B.3] for more de-
tails.

Port: A port is simply the name we give to point
of connection between a unit and a channel.
Port characteristics are entirely static and lim-
ited to the type and size of messages the port
will carry (which must match the type and
size of messages carried by the port it is con-
nected to). In implementation a port will be
able to transfer at most one message per cy-
cle and must therefor be as large as the largest
message it can support. Ports will operate un-
der FIFO style semantics, with a __READYsignal
to indicate data (on an input) and free space
(on an output) along with a __READ(input) or
__WRITE(on an output).

Inside Edge: This marks the interface between
the wrapper and the unit. This includes all
of the signals associated with the unit’s vari-
ous ports, as well as those listed under wrapper
above.
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B The RDL Language

B.1 BNF Grammar

This section contains the grammar of the RAMP
description language in a BNF style format. Text
such as namespace marks a keyword, which would
literally appear in the RDL text. Keywords like
this are case sensitive, and should appear in all
lower case. Text like F'ile marks a BNF variable.
Parentheses ( and ) mark BNF groups, and do not
appear in the RDL text, ever. Whitespace is en-
tirely ignored. Comments may be in either stan-
dard C/C++/Java style: // to end of line or /**/
blocks.

Numbers can appear in two formats, ones which
start with a numeral 1-9 must be in decimal. Num-
bers which start with a 0, must then contain a base
specifier, followed by a number in that base. Valid
bases are:

Decimal: 0d...
Binary: 0b...
Hexadecimal: 0Ox...
Octal: Oc...

What follows from here is a complete BNF
description of RDL.

File ::= Statementx

Statement
::= NamespaceDecl ;
| IncludeDecl ;
| ChannelDecl ;
| MessageDecl ;
| UnitDecl ;

IncludeDecl ::=
include FileName as Staticldentifier_Simple

NamespaceDecl ::=
namespace Staticldentifier_Simple { File }

ChannelDecl ::=
channel ChannelType Staticldentifier

ChannelType
::= ChannelTypeSpecFI1FO
| ChannelTypeSpecFIFO Pipe
| StaticIdentifier

ChannelTypeSpecFIFO ::=
fifo < Number, Number >



ChannelTypeSpecFIFO Pipe ::=
fifopipe < Number, Number, Number >

MessageDecl ::=
message MessageType Staticldentifier

MessageType
= MessageTypeSpecSimple
|MessageTypeSpecStruct
| MessageTypeSpecUnion
|StaticIdentifier

MessageTypeSepcSimple ::=
bit [ Number |

MessageTypeSpecStruct ::=
struct { MessageFieldDecl* }

MessageFieldDecl ::=
MessageType Identifier (, Identifier)x ;

MessageTypeSpecUnion ::=
union { MessageUnionFieldDecl* }

MessageUnionFieldDecl ::=
MessageType MessageFieldT ag ( ,
MessageFieldTag)+ ;

MessageFieldTag ::=
Identifier ( < Number > )?

UnitDecl ::=
unit UnitType Staticldentifier

UnitType

== UnitTypeSpec

|StaticIdentifier
UnitTypeSpec ::=  { UnitFieldDeclx }
UnitFieldDecl

== input PortType Dynldentifier_Simple ;

| output PortType Dynldentifier_Simple ;

| instance UnitType Dynldentifier_Simple ;

| channel ChannelType Dynldentifier_Simple

{ Dynldentifier —> Dynldentifier } ;

Staticldentifier

n= Staticldentifier_Prefix?
Staticldentifier_Simple

|StaticIdentifier :: StaticIndetifier_Simple

Staticldentifier _Prefix

| ©: Number :

Staticldentifier_Simple ::= Identi fier

Dynldentifier

n= Dynldentifier_Prefix?
Dynldentifier_Simple

|DynlIdentifier . Dynldentifier_Simple;

Dynldentifier_Prefix

| . Number .
Dynldentifier_Simple ::= Identi fier

Identifier :=[a — zA — Z_|[a — zA — Z0 — 9_]

B.2 Quick Reference

In section[B.1]above, we gave a BNF style grammar
for the RAMP description language. In this section
we give an english language description of RDL,
and the constructs in it. We will restrict ourselves
primarly to describing how the constructs of RDL
map to the concepts of RAMP layed out in section
For a more complete discussion of RDL, and the
motivation behind it’s design, see section [5.1

namespace: Hierarchical namespaces are the base
constructs of RDL. Each file is represented as
it’s own namespace, which can optionally con-
tain any number of namespaces. Each names-
pace has a name within it’s parent namespace,
thereby forming a tree rooted at a single RDL
source file. The name of the root namespace
is never required in RDL, but is often used in
the code generated by RDLC, and can therefor
be set as a command line parameter to RDLC
(the design name). In addition to other names-
paces, namespaces can contain any of the be-
low listed constructs.

include: In order to support independant devel-
opement of RAMP designs, the include decla-
ration will include the complete text of another
RDL file as a child namespace of the names-
pace in which the include appears. Include is
a simple way to take a complete namespace
and move it to an external file.

channel: Named channel declarations, as they ap-
pear directly in namespaces, contain only the
bitwidth, latency and buffering parameters of
the channel. A named channel has no type in-
formation, but provides a convenient name for
a channel type which may later be used.

fifo: A fifo channel models a hardware style
FIFO, with variable bitwidth and buffer-
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ing. The latency is 1, ¢.e.this is not a
transparent FIFO.

fifopipe: This provides access to the complete
channel model of a pipeline and FIFO
combined, as shown in figure This
allows control of the bitwidth, latency
and buffering independantly. The mini-
mal value for each parameter is 1.

message: Named message declarations provide a

way to name both simple and structural mes-
sages in a way which enforces typing. Two un-
named messages are considered to type match
if they have the same fields and bitwidths, how-
ever named messages only match if they refer
to the same named message declaration (they
may do so indirectly of course). Thus named
messages are both for the convenience of hu-
man readable, self-documenting code and to
enforce strong typing on top of a very simple
bit-type model.

bit: Simple messages consist only of a
bitwidth specification.

struct: Structural messages declare a com-
plete data structure with named fields,
which can themselves be structured. Un-
like structs or classes in most software
languages however, structured messages
also must maintain ordering of their
fields, so that marshalling and unmar-
shalling of structured messages is well de-
fined. The ordering of the fields is left to
right, top to bottom as they are read from
the RDL file.

union: A union message is one which carries
at any given time any one message from
it’s union set. Which message is being
carried is distinguished by a tag value as-
sociated with the message. Fixed tag val-
ues may be specified in the RDL declara-
tion of the union field. Union fields with-
out explicit tag assignments will be as-
signed tags in a deterministic, repeatable
fashion, as described in section [5.1

unit: Units are by far the most complicated kind

of declaration in RAMP. A unit declaration
may have any number of fields, including input
and output ports, instances of other units and
channels which connect instance ports, along
with inputs and outputs.

input: An input declaration indicates the ex-
istence of an input port with the given
port type on the containing unit. Port
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types may either be named, or specified
directly.

output: An output declaration indicates the
existence of an output port with the given
port type on the containing unit. Port
types may either be named, or specified
directly.

channel: A channel declaration inside of a
unit, unlike a named channel declaration,
specifies not only channel model, but also
the two ports which that channel con-
nects. The ports may either be inputs or
outputs of the containing unit, or ports
on any of the instances or subinsstances
within this unit.

instance: An instance declaration indicates
the existence of a unit instance within the
current unit. The containing unit in this
case is hierarchically defined, and can be
generated completely and automatically
by RDLC. An instance may be of a named
unit, or of an unnamed locally defined
unit.

static identifier: A static identifier is a name for

an RDL declaration, be it a namespace, chan-
nel model, port, message or unit. Static iden-
tifiers can be fully qualified using the names-
pace separator ::. A rooted static identifier
is one which is prefixed with a single ::. A
static identifier may also include references to
the enclosing namespaces by beginning with a
2 Number ::.

dynamic identifier: A dynamic identifier is a

name for an instance or port within a unit.
They may be fully qualified, rooted or parent
relative the same as static identifiers. However
the separator is . (A period).
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